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Abstract

This paper is concerned with R/S analysis given a fractional ARIMA(p. ¢, ¢) model with finite variance wheve
the aim is to estimate the intensity of long-range dependence of the particular series. This is done through
what is commonly referred to as the Hurst parameter {dencted by HY. M is a measure of self-sirsilarity of a
given time series. The goal of this paper is to examine the effectiveness of applying the method of asymptotic
quasi-likeithood to /S analysis tustead of the conventional method of least squares.

1. Introduction

The Hurst parameter (/) is a measure of the intensity
of self-similarity of a particular time series. Fractional
autoregressive integrated moving average or [ractional
ARIMA(p,d,q) processes (with 0 < d < 0.5. since
the process is not stationary if d > 0.5) are examples
of asymptotically second-order seli-similar processes
with selb-similarity parameter / = d + 0.5 {previding
the process under consideration has finite variance) or
H = d+ 1/ (if the process being analysed possesses
infinite variance}. Taqqu and Teverovsky (1896) ex-
amined fractional ARIMA{p, d, ¢} models with both
finite and infinite variance structures and found that
the resulting estimates are not unduly influenced when
either of the variance structures are considered. Gur
attention, in this paper, is limited to finite variance
structures.

The alternative to modelling long-range dependence
via seli-similar processes is via time series methods
which would involve more parameters as the sample
size increases thus making the analysis and interpre-
tation of the results even more complicated.

In Section 2 we outline the rescaled adjusted range
{(R/S) procedure and discuss Hurst’s empirical power
law relation. We also define the range and the stan-
dard deviation in Hurst’s rescaled adjusted range
statistic, discuss the eflectiveness of R/S analysis
for the fractional ARIMA(p, d, ¢) miodel and examine
the effect of a well-controlied sliort-range dependence
structure on R/S analysis {i.e. the order of p and/or
g is not equal to 0). Simulations are performed to
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show what effect such a short-range dependence struc-
ture has on the accuracy of the resulting estimates of
If. The asymptotic quasi-likelihood procedure is out-
lined in Section 3 along with an example of its ap-
plication. We compare the estimate of H/ via R/S
analysis using the asymptotic quasi-likelihood methed
to that obtained where the method of least squares is
employed and compare these results to those ohtained
by Taqqu and Teverovsky. Finally, numerous simu-
lations are performed in Section 4 and the resulting
estimates analysed via R/S analysis using botl the
traditional method (least squares) and the method of
asymptotic quasi-likelihood., All simulations involve
8192 data values using the Durbin-Levinson algorithm
iy S-plus.

2. The R/S Method

The rescaled range { R/S) method was first introduced
by Turst (1965, In this method the range R(z, m} is
defined as

Nt m) =  max Y{t,m)— min Y (t,m),

<t<m 1<t<m

where { is the discrete integer-valued time and m the
time-span considered. The standard deviation, de-
noted by S(¢,m), is defined as

m

S{t,m) = (;1; Z(}’(t, m) — ¥ (m)*)*°.

t=1

The use of this dimensionless /S ratio allows ob-



served ranges of various phenomena to be compared
over Jong time periods. Hurst found the following
power law empirical relation between the guotient of
the range R(z,m) and the standard deviation, S, m}:

E[R{m}/S(m)] = et as m o— .

where [T denotes the Hurst parameter (0 < H < 1),
and ¢ is a finite positive constant that does not depend
on the tirme span m.

sides of the

Taking logarithms (base 10) of borh

rescaled range gives

log{R(m)/S{m)] = '+ Hlogln) + elm). {H

The logarithm of the rescaled range, is then rﬁ.!mted
as a function of the time-scale index, lo“{m) This
known as the rescaled adjusted range plot {also called
the pox diagram) of /5. i’l’()\'iding the parameler
H in relation (1) is well defined a typical rescaled ad-
justed range plot commences with a trausient region
representing the nature of short-range dependence in
the sample {in this transient region the quantity R/S
grows faster than m 5 for small or moderate m}, but
memualh settles down as m increases and fluctuates
in a straight “street” of a certain asymptotic slope.
The estimated slope, 5 is typically obtained by using
the least squares linear regression of log{R(m}/S(m)]
on log{m}.

Mandelbrot and Wallis (1969) have shown that the di-
vision of R by S leads to robustness against extreme
deviations from normality, including the infinite vari-
ance syndrome. It is partic uEazl - robust with respect
to heavy-tailed distributions. The biggest drawback
however, is the loss of efficiency umle?r Craussian mod-
els than is the case with maximum hkelihood estina-
tors, and thus this method does not necessarily min-
imise the bias.

The modified £/S statistic, introduced by Lo (1991,
corrects Hurst’s classical R/S, allowing for the of
fects of possible short-term dependence. The result-
ing statistic is found to be Invariant over the general
class of short memory processes but deviates for long-
MEemory processes.

We now focus our attention on the power of /5 anal-
ysis on the fractional ARIMA(p, d,¢) model. Under
the scheme of least squares the f2/5 method can be
affected by a variety of factors, namely;

1. the range of d,

2. the order of the autoregressive and /or moving av-
erage components, and

3. the fact that the {e(m)} in (1) may possess non-
constant variance and are thus not independent.

Estimates of the Hurst exponent H via /5 analysis
are found to be biased towards 0.72. More specifically,
in using the empirical Hust law the estimate of H
when the true value of /{ is less than 0.72 tends to
he overestimated and the estimabe of H when the true

value of I is greater than G 72 tends to be underesti-
mated.

The second point has been addressed by Tagqu and
Teverovsky., They applied the R/S method to data
simulaled from a fractional ARIMA(p, d, ¢) model and
found that this estimator does not work as well when
the arder of either p or ¢ is not zero. However, if the
model under consideration exhibits a well-controlled
short-range dependence structure (e.g.  Fractional
Gaussian ARIMA(0,d,0)) R/S analysis always leads
1o a very accurate estimate of the parameter d (and
). Using R/5 analysis in situations where short-
range dependence is also present leads to biases in
the final estimate of the parameter ¢ (and H). An-
other interesting result that Tagqu and Teverovsky
found in analysing a process with a short-term depen-
dence structure is that, if the parameter(s) chosen for
p and/or ¢ are negative, there will be significantly less
induced hias in the estimate than would be the case if
the parameter(s) are positive. /S5 analysis is biased
in this case even though the estimator is still efficient.
The third point is an important reason for introduc-
ing the asymptotic quasi-likelihood method to the R/S
procedure. The usual method of applying least squares
linear regression to the data transformed via £/5 anal-
vsis would not provide an accurate estimate of
when the residuals possess non-constant variance. The
asymptotic guasi-likelthood estimate, in such circum-
stances, would appear to he effective.

Note that fractional ARIMA(p.d.q) processes (with
0 < d < 0.5 exhibit long-range dependence where
the parameter d determines the level of long-range de-
pendence whilst short-range dependence is modelled
through the parameters p and ¢, The eflectiveness of
several estimators used by Taggu and Teverovsky to
estimate d decreases when there is an additional short-
term dependence structure (i.e. when either the order
of p and/or ¢ is not equal to zero). The results for the
R/S analysis are dependent on the number of subin-
tervals and the minimum and maximam fags chosen.

We now simulate data from several fractional autore-
gressive moving average processes. Due fo the amount
of time it takes for simulations to be performed forty
simulations wili be carried out for each different model
discussed. Furthermore we use Bodruzzaman et al’s
(1991) method of applying Hursts Rescaled-Range
(R/S) method. The window is defined as the segment
of the particular time series, the beginning of wlnch 18
not allowed to move but the size of the window is dou-
bled every time the R/S ratio is calculated. This is in
conirast to the usual application of the f/5 method
where, for each window size m, there are N/m differ-
ent /S values, the mean of which is the statistic anal-
ysed. The estimated slope is the estimate of the Hurst
pu-ameter By dppiyiné this method eleven values of
RIS (R(m)/S(m) where m = 2" and n = 1,2, .. 11)
are obt.mned from the original 8192 cabsewa‘tlons. We
commence with 4 cbservations {ie. n = 1,2,..11
but also compare the resulés via B/S analysis when
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the initial window size 15 8 (n = 2.3.....11) and 1§
(n = 3,4, ...11) respectively. This is done because, as
mentioned before, the usual rescaled adjusted range
plot commences with a transient region in which the
quantity R/S grows faster than m® for small m.
Therefore smali vaiues of m should be discarded when
calculating the slope so as not to unduly influence the
resulting estimate of H.

Upon obtaining the eleven R/S values the method of
least squares is applied to this transformed data {i.e.
the slope of the line in the graph of log(R/5) versus
log{m} is estimated where m is the windew size). 1f the
model under consideration has a weil controlled short-
range dependence structure (e.g. Fractional Gaussian
ARIMA(0,d,0)) the /5 methed will always provide
a very accurate estimate of the parameter d. In this
paper the emphasis is on models with additional short-
range dependence componentis.

Example 1: We now wish to demonstrate the effect
of different initial window lengths. In this example
data is simulated from the fractional ARIMA(1,.22.0)
process

Ty -
Y, = g,

(1-0.8B)1 - B)

where €, is white noise. Note that the true value of
H equals 0.72. Forty data sets are simulated from
the above model. Taking the initial window size 1o
be 4, 8 and 16 respectively the average of the forty
estimates of [ are given in Table 1. We see that the
estimate becomes more accurate when at least the first
observation (n = 1, when the data is transformed via
/5 analysis) is discarded before applying the method
of least squares. Generally the initial window length,
m, (or lag) is taken to be about 10

Method | mean(#) | stand.error{ )
LS(4) 0.803 0.005
L5(8) 0.773 0.006
LS{16} 0.750 0.0G7

Tabie 1. Least squares for three different initial window
sizes.

Example 2: We now simulate forty sets of data from
the fractzonal ARIMA(2,.3,0) process

(1-028-0.687)(1~ B, = ¢,.

and the output is given in Table 2. The estimates are
improved when the initial window length is increased
although the final estimate is still not as accurate as
hoped.

As can be seen increasing the initial window length
might lead to improved estimates of . This leads
to the question of how to determine the initial win-
dow length, the aaswer to which is not very clear. In
the following section the asymptotic quasi-likelihcod
method will be introduced to estimate #. Via this
method the accuracy of the estimate is improved and
the determination of initial window length is avoided.
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Method | mean{#) | stand.error(H)
LE(4) 0.872 0.00¢6
LS(8) 0.863 0.0067
LS(16) 0.848 (.004

Table 2 Least squares for three dilferent initial window

sizes.

3. The Asywmuptotic Quasi-likelilhocd Method

Assuie Lhal the observed process {X,} satisfies the
model

Noo= f(8) 4 A (0). ()

where no= L, 2,7 f,, is a predictable process. 4 is an
unknown parameter from an cpen parameter space 9,
F. denotes a standard filtration generated {rom V|,
s < nand M, is an error process such that

E(Mp|Fpr) = 0. {3
M| Fao) < o

Equation (3} implies that M, and 14; are uncorrelated,
i # j. The case where Ay are mutually independent
with mean 0 s a special case of {3).

According to she guasi-likelihood method (see Go-
dambe and Hevde, 1987) a quasi-score estimating
function can be determined based on mode! (2) and
has the expression

.o f8) _
GN((}) - ; mﬁj}m;‘f”l (4)

where f,, represents the derivative of f, with respect
to the unknown parameter 6.
The quasi-likelihood estimate of @ is obtained by
solving the quasz score normal equation G {0) = 0.
leen Fulf) s a linear function of 4, the quasi-
likelihood estimate always provides a good estimate of
f without knowing the distribution of A7, as long as
E(M3{Fa-y) is known. But in practice it is very diffi-
cult to accurately determine F(A[2F,_1) and thus,
the expression for the quasi-score estimating func-
tion. Therefore, a possible approach of the asymptotic
quasi-likelihood method was discussed by Lin (1943)
and Mvoi et al (1997} and an inference procedure was
given. The procedure is as follows; we accept the true
model is (2). If, for given X,. we can éefermine a
predictable process g, such that E(X] - g1 F,_1) is
sinall enough for all n, then

E(MIFoor) = go— J20),

and the asymptotic quasi—score estimating funciion

fn(f) M,
Z g — 13(0)

n'-l
is obtained. The sojution of the asymptotic quasi-score
normal equation G (f) = 0, obtained via the two-



stage method, is called the asymptotic quasi-likelihood
estimate. Mvoil et al (1997) have proved that, under
certain conditions, the asympiotic quasi-likelilood es-
timate is a good estimate of the true parameter. In
particular, when fu(f) is a linear function of 8 the
asviiptotic quasi-likelihood estimate is consistent as
sample size is increasing.

Example 3: Our analysis now turns to the simulating
of data from the fractional ARIMA({2 .53.0]) process as
in Example 2. It is shown how to apply the asymp-
totic quasi-likelihood method to the data and obtain
accurate estimates of J7. 8192 data vajues were simu-
lated from this model and by applying B/S analysis to
the data we transform the 3192 data values to eleven
data points, We consider model (2} where n=1.2,...11
and X = log[R{m)/S(m])] (where m = 27+ and
Fn(8) = "+ Hlogn. Based on this procedure of
asymptotic quasi-likelihood three possible ¢,,s are de-
termined based on this sumple ol eleven data poiuts

are Hsted helow:

Xn. The predictable proc

g, = —0.742-0.31 PN+ 0830{logn ).

gz ~1.472 t>—~t}iu\,,_l—l! TN
+1. l;’(ioﬂn) )

g3 = —LTH - 0836N]_, ~ u...mj,\';;#.ﬁ,
—{31 }Ql\”w‘—r I "b}(lown)

According to the criterion discussed by Brondini and
Lin (1997) for selecting g,y 1k can be sean from FPigure 1
shal g1, 18 not as good aL approaching N7 as the other
It can be seen that there s
Turning

two predictable processes.
very little difference between ga, and ug,.
our attention o the {47 — gu}. they can be accepled
as stationary for each of the three ¢,'s. From Table
3 it is seen that the most accurate asymplolic quasi-
Lkelihood estimate occurs when the third predictable
process is used followed by goa.

Method ey L&(8) L5{16)
H 0.928 0.938 0.903

Method | AQL{g1) | AQL{y2) | AQL{ga}
H 0.975 §.870 0.835

Table 3:
sizes) and asympiotic quasi-likelihood estimates {{or three

Least squares (for three different nitial window
possibie predictable processes) for Example 3.
This example shows the lact thar the possibility of
hmproving the estimate of # via the asymptotic quasi-
likelihood method by EHL’cU‘\ of choosing a better g, to

approach the quaniity y7 without serious reservations
concerning the initial window length

4. Comparison of Methods using Simulations
of Fractional ARIMA(p,d. q)

In this section we will further compare the accuracy
of the estimate of H via the least squares method and
the method of quasi-likelithood. We will also discuss
what situations the AQL method will be much more
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V2 (hard line) and three possible yn's {dotted
g1 starts at the Arst lag, go, starts

Figure 0 X
fines) for Fx .unpit 1.
at the second lag and gan starts at the third lag.

accurate than the method of least sqyuares.

Example 4: Forty simulations are performed of the
following model:

(1 =028 ~088%){1-B)%Y, =,

From Table 4 it may be seen that when taking the
mean value of the forty simulations we find that the
method of least squares vields a value of 0.572 with a
standard error of 0.G18 and the method of asymptotic
quasi—likelihood with a predictable process of the form
iy = UL}"F(};_'\' i \”_ ~{~03,\'3_3+C(iogrl)2 vields
a mean value ofG.Sl 8 with a standard error of 9.010.
The asymptotic quasi-likelihood is by far the most ac-
curate method in this example. It is seen that the
tican value is within two standard errors of the true
value (when the )wdicmhlo process is of the form
in = {y + 0 \n—] -+ g')\ _» + 93 n _3 + C(iO“‘i’l) )
\\hul'h this is not the case when the least sguares
methed is applied.

Even when the initial window size in increased irom ¢
o 8 the least sguares estimates do not improve much
at all {the mean of the estimates is now 0.863 with a
standard error of 0.010). Increasing the initial window
length to 16 the estimate becomes 0.848 with a stan-
dard error of 0.012. In this instance even relatively
farge initial window sizes do not significantly improve



Method | mean{f) | stand.crror(f7)
LS(4) 0.872 0.0ls
LS(8} U.864 UL
L3{186) 0,845 g.01z

AQL{ga) 3.818 g.01d

Table 4: Least squares (for three different initial window
sizes) and asymptoiic quasi-likelihood estimates for Exani-
ple 4.

the estimates.

In the following we consider various cases for differ-
ent d in the ARIMA(p 4, ¢} model and the resulting
estimates of H via both the method of least squares
and the method of asymptotic quasi-likelihood are
compared. Thirty simulations are performed for each
model varying the values of d [rom 0 to 0.4 in incre-
ments of 0.1. The order of the parameters p and ¢
may either be 0 or 1. If the crder of both p and
q are equal to 1 then the coeflicients of the model
are either ¢; = 0.3 and ¢, = 0.7 or ¢, = —0.3
and ¢; = --0.7 respectively. Otherwise ¢, = 0.5 or
€1 = 0.5. Once again we cornpare the mean of the lenst
squares estimates to the mean of the asymptotic quasi-
likelihood estimates using a predictable process of the
form gn = Qo+ 6 X | + 0, N1, +0,.X7 _, +cllogn)?.
The results are reported in tables 5, 6, 7 and 8. The
initial window length for all these simulations was &,
When p = 1 and ¢ = 0 the asymptotic quasi-likelihood
estimates are very accurate. The least squares method
only yields accurate estimates when d = 0.3, otherwise
this method overestimates the value of d when the true
value is less than 0.3 and underestimates the true value
when d = 0.4,

‘The algorithm used by Taqqu and Teverovsky leads
to least squares estimates which are more biased than
those obtained using the Durbin-Levinson algorithm
at smalier values of d. Some of the bias may come
from the fact that Tagqu and Teverovsky commence
with an initial window length of 5 compared to 8 in
our analysis. However, the R/S procedure is strictly
adhered to by these authors whereas we use a simphi-
fied method to calculate the B/S ratio where there is
only one window and the window length varies.
When p = § and ¢ = 1 there is the reverse trend
in the resulting estimates, the true value is always
underestimated. The most accurale estimate ceeur
around d = 0.3, The biases obtained by Taqqu and
Teverovsky are very large compared to our results.
They obtain mean biases (via least squares) of -0.113,
-0.122 and -0.141 when the value of ¢ varies from 0.2 to
0.3 and finally to 0.4. The mean biases we obtain via
least squares are -0.074, -0.013 and -0.048 respectively.
The biases obtained via the method of asymptotic are
usually fess than those obtained via least squares.
When p=1and g =1 (with ¢, = 0.3 and ¢, = 0.7}
the estimate of o is always less than the true value.
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The biases are once again iess than those obtained by
Toggu and Teverovsky. For all 4. the least squares es-
titnate is further from the true value than the asymp-
totie quasi-likelihood estimate. When d = 0.3 the bias
via the asymptotic quasi-likelihood method is -0.054
which compares favourably to the bias of <0157 ab-
tatned by Taqqu and Teverovaky., The mean square
errots are also much smaller in our simulations than
those by Taqqu and Teverovsky.
Whenp=tlandg=1{withg, = -03and 8 = 07
d i in Lact overestimated when o = 0, 0.1 and 0.2 and
the asymptotic quasi-likelihood estimate is less biased
than the method of least squares at each value of o,
Compared to the case when both coefficients were pos-
itive theve is much less blas induced in this instance.
The bias obtained is very close 10 0 via both methods
in Lhis example although when the coeflicients were
positive {i.e. oy = 0.4 and 0 = 0.7) the biases ob-
tained were 0.090 using the least squares method and
0054 when the methiod of asympiotic quasi-likelihnod
was used.

3. Conclusion

Our method  of estimating ¢ in a [ractional
ARIMAp. d,¢) model (e, 12/5 analysis with the 8-
ual estimate of d coming from the application of the
asymiptotic quasi-likelihood method) will only affect
the: results if the variances are not equal {i.e. the bias
with the application of cur method does not come from
unequal variances). This method seems to be very
effective when there exists a short-range dependence
structure, and is much more effective than when the
methed of least squares is applied. The asymptotic
auasi-likclihood method cearly cutperforms the least
squares method when we consider the ARIMA(L. 4, 0)
model. When considering the ARIMA(G, d.1) model
the estimates of H via both methods are compara-
ble for high values of d but the method of asymptotic
guasi-likelihood is clearly much more accurate when
d=01and d=0.2

When the ARIMA(L, d, 1) model {with positive coeffi-

cients) is considered the method of asymptotic quasi-
likelihood is much mare effective than least squares
and only in the case where d = ¢ are hoth meth-
ods comparable. However if the ARIMA(L, ¢, 1) model
{with negative coeffcients) is considered the asymp-
totic guasi-likelihood method s much more accurate
than the method of least squares for low values of d.
For d = 02, d = 0.3 and ¢ = 0.4 there appears to
be tittle difference. The estimates in general via both
methods are much closer to the true value than is the
case when the coefficients are positive.

According to our other simulaticns (not shown in this
paper) we have seen that when considering higher or-
der pure autoregressive models the asymptotic quasi-
likelihood method far outperforms the method of least
squates when applied to R/S analysis.



As we have seen, the asyvinptotic quasi-likelihood

method will only affect the resuits il the variances are

not equal. The bias, in this instance. s not a resuit of
unequal variances.
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d=1 ! d=0.1 d=0.7 d=0.3 =04 |
AQUT LS TAQL T LS [AQLT IS TAQU T IS TAQL T IS
Bias | 0.029 | 0.030 [ 0.021 [ 0.067 [0.020 [0.041 [ 0.000 | 0.001 | -C.087 | -0.085
& 0.064 [ 0.030 [ 0.067 [ 0.045 |COST U038 [ U077 [ 0040 [ 0u6y | 0.052
VALSE | 0.060 1 0.093 [ 0.069 | 0.07¢ | 0.088 | 0.056 | 0.075 | 0.049 | 0403 | 0100 |

Table 5 Least squares and asvmprotic quasi-likelihood estimates for the [ractional ARIMALL 4.0) model.

d=0 d=0.1 d=0.2 d=(.3 d=0.4
AQL LS AQL LS AQL LS AGL LS AQL L
Bias 00008 -0.046 1 S0040 DS0058 T -0050 | -G.0T4 1 -0.022 1 0013 ) -0.0a1 T -0.448
o 0.062 1 0046 | 0063 ¢ 0.639 | 0.0s2 | 0041 | 0074 1 0.038 | 0.065 | 0.037
VAMSE | 0.071 G.061 | 0.087 | 0.070 | 0.095 1 0.0853 | 0.076 | 0.040 | 0.082 | 0.081

Table 6: Least squares and asvmprotic guasi-likelibood estimates far the fractional ARIMA(0. d, 1) model.

d=0 d=0.1 a2 d=0.3 d=0.4
AQL LS AQL LS AQL LS AQL LS AQL LS
Bias 0002 <072 1 -0059 | -0.082 | -0.059 1 -0 100 | -0.054 ] -0.090 ¢ -0.091 1 -0.178
o G.050 | G031 00506 | 0.032 ] 0068 1 0637 | 0.083 | 0.038 71 0.088 | 0.036
VATSE | 0072 | 00830 | 0.082 1 0088 1 0000 | 011 1 0.095 | 0.098 1 0128 1 0,137

Table T Least squares and asymptotic quasi-likelihood estimates for the fractional ARIMA(Y, 4.1} model {with

positive

coefliclents},
d=0 d=.1 d=0.2 =03 d=0.4
AQL LS AQL Ls AQL LS AQL LS AQL LS
Hias 0.642 1 0057 | -0.004 1 0020 | 0001 1 0014 1 -0.003 1 -0.008 1 -0.04971-H 055
I 0.067 {0036 ) 0470 ¢ 0.037 1 Q0 [ G036 1 0072 1 0.035 1770.0684 T 0.039
VAFSE [ OGGS | 0065 1 0.069 | 0.046 | 0.074 | 0.033 | 0.07! 0.036 | 0.079 O.Uﬁ?j

Table 8: Least squares and asyvmptotic guasi-hkelihood estimates for the [ractional ARIMA{L, d. 1) model (with negative
coefficients).



